
WP200 (v1.1) November 14, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

The introduction of Spartan-3™ devices has created
multiple changes in the evolution of embedded control
designs and pushed processing capabilities to the “almost-
free stage.” With these new FPGAs falling under $20, in
volume, with over 1 million system gates, and under $5
for 100K gate-level units, any design with programmable
logic has a readily available 8- or 16-bit processor costing
less than 75 cents and 32-bit processor for less than $1.50.

This white paper explores the benefits, system
requirements, cost, design process, software and hardware
architecture, and expansion strategy, along with many
details of these systems.

White Paper: Spartan-3

WP200 (v1.1) November 14, 2003

Using Spartan-3 FPGAs
As Low-Cost Controllers for Remote

Digital Cameras

By: Darrell Wilburn, Dan Hafeman, Al Rogers, and Helen Yu

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
mailto:darrell@iq-service.com

2 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

Benefits Today’s System Design and business requirements create tremendous challenges to produce
products quickly and at lower cost than competitive products. It is now common to require that
a project deliver an entry-level product in four to six months for an early adopter program.
Achieving first mover advantages in a marketplace has been shown to dramatically impact
product success. Marketing considerations may even render a later entry economically
unfeasible, causing termination of the project. Given this aggressive design environment, the
new Spartan-3 SOC (system on a chip) on a platform FPGA offers significant benefits:
• Complete hardware and software solution available in four to six months because of the

advantages of parallel design flow and late-in-project hardware adaptability
• Enhanced testing and verification
• Multiple processors for peripheral acceleration easily achieved
• Simplicity to offload the OS software to avoid peripheral bottlenecks
• Incremental hardware updates enabling the solving of field timing problems in hardware
• Flash memory write circuits that allow remote configuration and program memory

updates
Spartan-3 cost advantages are the direct result of higher densities and larger wafer sizes in the
Spartan-3 production process. The new cost structure enables low-cost application advantages
with almost free MIPS, wherever a PLD device is used next to a RISC processor – with or
without DSP.
Figure 1 illustrates the application chosen for the example system design discussed in this
publication.

The application is a security camera and control system that provides access from anywhere on
the Internet, using any standard browser. From a remote site, access is provided to a home,
cabin, or business facility via a password-secure internet connection. Once connected, the user
can snap pictures from various low-cost cameras and view them at will. Furthermore, a user
may activate controls such as turning on or off lights with verification of the results via cameras
or other sensors. The user may view sensors such as temperature, water flow, or electrical
usage. The system is able to contact the user and others, such as police and fire departments, as
a result of activity in the house from motion detectors or fire alarms. Since many remote areas
do not have broadband, the application requires dial up modem access over POTS (plain old
telephone systems). In the future, wireless access and more controlled elements will be added.
Given the vision and promise of the new technology, how do engineers begin to take advantage
of these facilities? What new design flow is required to exploit the technology? How is the new
design flow dramatically less expensive and faster to market? What are some design techniques
that can be applied economically at these new levels of integration? The remaining sections
address these issues through a design example.

Figure 1: Example System Design

Ethernet and/or Phone

WP200_01_100603

User in NEW YORK

User in LOS ANGELES

Fire Alarm
Lights
Camera #1
Spartan-3
Camera #2
Motion Detectors

http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 3
1-800-255-7778

R

System
Requirements

Cost
The low-cost security camera and controller was derived from marketing requirements for a
camera product for the coming Christmas season. The unit must be small, on the order of 4” X
6” X 2”, and low cost, on the order of $40 per system at volume of 5000 per month. Current
products in the market with less capability are priced from $199 to $399 and do not support
home controls. The intent is to sell this product with USB web cameras at under $120 per unit,
yielding a 2 or 3 to 1 price advantage, which will certainly make it a winner.
Notes: there is no need to support full-motion video for most security applications, but full-
motion video will be provided as a high-end option in the future. The product cannot be
implemented using a personal computer, because of reliability and cost issues. It must be
compatible with low-cost USB-controlled cameras in the range of $20 to $40. The system must
be robust, with automatic recovery from power failure, and must provide a watchdog timer
capability to recover from any random failure in a few seconds time.

Communications
Communications interfaces will include high-speed Internet via an RJ45 connector or dial-up
service via an RJ11 connector over any PPP telephone connection. This enables the product to
be easily connected into a home with Ethernet already installed, but also provides access via
dialup for the majority of home environments where no broadband capability exists. In the
future, wireless broadband (802.11a,b,g) will be supported. Communication over any ordinary
phone line requires a modem capability as an option and system capability to handle dial up
protocols. The system must be capable of automatically dialing out to send emergency e-mails
or instant messages to a small number (five) of locations. The system must implement an
Internet server to support both broadband and dial up. A minimal TCP/IP stack capable of
hosting a simple web page, sending emergency e-mails using push technology and receiving
product upgrades over the Internet are required.

User Interface
A simple user interface will be provided via a standard web page usable by a relatively
inexperienced web novice anywhere on the Internet. The password-protected page will be
accessible via any standard web browser running on a PC. The web page guides the owner
through the operations of picture taking, zoom, pan, and remote object activation. In addition to
password protection, the product can also be configured to qualify accesses based on a short list
of allowable URLs to provide even more security. Of course this requires the accessing
machine to have a fixed IP address and a more sophisticated user capable of determining that
address and programming it into the Camcon.

Controls
The product must provide control outputs for up to 256 standard X10 devices, which are
controlled via power line modulation. Up to 16 buffered TTL-level outputs will be provided to
add controllers and interfaces to other controllers in the future. Four of these outputs will be
used for each camera with positioning features for pitch, roll, yaw and zoom features. Other
possible uses might be ringing an alarm or turning off a main water valve, etc. Up to 16
buffered TTL-level inputs will be provided for inputs from motion detectors, fire alarms, and
other sensor input. Analog inputs are not required.

Upgradability
Field upgradability is a major system requirement for both hardware and software.
Specifications are evolving with follow-on products scheduled over the coming months

http://www.xilinx.com

4 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

requiring both FPGA hardware and software upgrades. To minimize total product cost, the user
alone should accomplish the upgrade without factory support in more than 95 percent of cases.
Thus, all products must work on one of a small number of available configurable hardware
platforms automatically detectable by the downloading software. In the future, new products
may be sold with a single field upgrade of software and hardware configuration only. An FPGA
will be used to implement the core of each configurable platform. All digital electronics,
including the embedded microprocessor system, will be implemented in the FPGA. The FPGA
hardware must contain upgrade circuitry to allow incremental hardware updates. As discussed
later, this includes FLASH memory write circuitry to allow FPGA configuration and
instruction memory update.

Future Performance and Features
Current acceptable camera performance is about six pictures per minute. This is adequate to
detect motion. In future product enhancements, however, MPEG video will be supported
enabling the broadband user to remotely access live video feed. DSP functions will be added
enhance pictures and extract additional information. Lighting compensation, automatic motion
detection, or missing object verification are all potential future features in the video arena.
Annotations, time stamping, picture enhancement, and battery backed-up operation are all
expected future enhancements as well.
This list below summarizes system-level requirements:
• Low cost, at $40 in quantity of 5000/month
• Small size, 4 X 6 X 2”
• Less than half sales price of current products on market
• Compatible with low-cost USB cameras
• Power failure and watchdog
• RJ45 Ethernet and RJ11 dialup
• Web server with push technology for dial out
• Simple user interface via web browser
• Password protection
• Control up to 256 X10 devices
• 16 outputs for level controls
• 16 inputs for levels from sensors
• Remote upgradability of both HW configuration and firmware
• Future DSP, faster pictures, and enhancements

X10 Controller
The X10 controller is a specialized control protocol for controlling devices in the home over its
power lines. While not an official standard, it has become the de facto technology for low-cost
home control. The X10 Platform Basics are summarized on the X10 protocol website. Please
access www.x10pro.com to learn more.
From the remote camera controller point of view, the most important element of X10 is that it
is the market-dominant technology in home controls, largely as a result of its long history and
low cost. Newer technologies have failed to meet the price/performance points effectively
served by X10. The remote camera/controller will receive X10 commands via a remote web
page user input. CGI (common gateway interface) programs will be utilized to translate a
command into zero crossing bursts of high frequency over 47 cycles of the power line. The
most difficult system requirement is that the bursts must begin within 50 µsec of the zero

http://www.x10pro.com
http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 5
1-800-255-7778

R

crossing, without fail. This constitutes a hard real-time requirement and scheduling issue for
any system required to supply the interface. In like manner, the controller must report status
back to the web page by monitoring other valid X10 signals on the line and report the resulting
activity. Some command queue management may be required in high use and power fail
recovery conditions.
X10 controller requirements are listed here:
• X10 controls appliances over power lines
• Dominant in home controls
• Controls up to 256 devices
• Two-byte commands received via CGI and translated to 47 bursts
• Hard real-time requirement within 50 µsec of zero crossing
• Demodulate X10 signals on the line
• Command queue management
• Watchdog transmit on failure

http://www.xilinx.com

6 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

Implementation Overview
Figure 2 and Figure 3 show block diagrams of the system board and FPGA-based logic design.
The design is based on a MicroBlaze embedded processor resident in the FPGA. Because the
computer resides in the FPGA, it can be enhanced in the future to support additional features
like MPEG video. In addition, problems can be resolved by either changing software and/or
hardware in the system. This flexibility allows for elegant solutions to real-time embedded
software timing problems. These upgrades will be available for download by the owners of the
product.

Figure 2: Block Diagram of the System Board

Power module and X-10
Xceiver

(X10 uses power lines)

1 meg x 16
Instruction/Data DRAM

Writeable Program
Flash Memory
(1 meg x 32)

Writeable Hardware
Flash Memory x 2

Ethernet Xceivers

Modem

2xUSB Xceivers

General Purpose
GPIO

Spare pins to external
Logic Analyzer

RJ45

RJ11
RS232

GPIO:
Motion
Detectors

GPIO:
X10

Status

Configuration

RS232 and JTAG Diagnostic Ports

USB

General IO

WP200_05_100603

Xilinx
Spartan-3

http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 7
1-800-255-7778

R

Design Process As can be seen from Figure 2, all digital logic, except for the modem and transceivers, reside in
the Spartan FPGA. The PWB (printed wiring board) consists only of memory, connectors,
transceivers, and modem. It can be developed in parallel with both the hardware and software
designs. Most importantly, the hardware functionality can be changed in the field without
upgrading the PWB, provided that the upgrades don’t require additional IO connector
resources. Because the PWB itself is simple and generic, there is low probability that a design-
induced bug will cause the PWB to require any additional design spins. There may be spins
resulting from manufacturing issues, but these can be implemented at convenient times and
shouldn’t impact the project schedule
Another benefit of implementing the logic on a configurable platform is that the hardware
design itself can be changed throughout the project with no fab delays, provided that the PWB
is available before the first design is ready for testing. Once a version of the design is complete,
it can be in the system and ready to test in minutes. There will be no ASIC fab or PWB fab
turnaround delays. Because of this, the team can implement the hardware incrementally, much
like software teams do. We envision a hardware design flow as follows:
• Implement a working demonstration MicroBlaze system with only on-chip resident

program and data memory
- Run a simple program to verify that the configuration FLASH PROM is functional,

the JTAG interface is functional, and the development tools are operational
• Implement the MicroBlaze processor system with minimal IO

- This will enable the software team to do RTOS bringup and start the testing of IO-
independent tasks

• Implement the networking interfaces
- The software teams can now test the network stack and develop the web page; in

addition, configuration software can be developed and tested

Figure 3: Block Diagram of the FPGA-Based Logic Design

WP200_06_100603

Standard IP

Custom IP

Debug Blocks

Future Blocks

Spartan-3

MicroBlaze
32-bit processor

Dual Port
Block Ram

Boot Program

SDRAM
Controller

Flash Read/Write
Controller

x 2

U
A

R
T

x 2
U

S
B

 C
ontroller

x 2

GPIO

OPB

DLMBILMB

D-OPB

I-OPB

OPB

Data Path Accelerators

Watch Dog
Timer

PicoBlaze
based

X10 Controller

Ethernet
Controller

Debug Block
+ LSA

JTAG UART

http://www.xilinx.com

8 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

• Implement the USB camera interfaces
• Implement the X10 controller
As the software is ported to the platform, the project management has the option to address
problems in either software, hardware, or both. For example, to relax real-time software
constraints, IO devices can be given additional intelligence by use of PicoBlaze state machine
processors. The decision can be made at any time during the project, unlike conventional
hardware where specs are essentially frozen before software development starts. This is known
as a software-driven hardware design flow.
Even though hardware turnaround times are fast and the FPGA debug facilities are quite good,
this project will make extensive uses of simulation for all new logic. Many capabilities of
software simulation, such as coverage analysis and boundary case testing, don’t exist on the
FPGA. These simulations help to produce a more robust design.
The entire Camcon application can be implemented on a standard personal computer. If it were
not for cost, reliability, and physical size issues, we would have chosen a notebook computer as
the Camcon platform. However, the PC presents a highly functional user-friendly emulator of
the Camcon product. Our intent is to use a Linux PC equipped with an X10 interface and a
second Ethernet port as the primary software development platform. Most new software
programs will first be tested in this environment before being ported to the Camcon platform.
The PC will also be used to evaluate cameras and implement their drivers. The software is
implemented in C/C++ and will be compiled native on the PC. Thus there is no need for an
instruction set accurate model of the MicroBlaze running on the PC.

http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 9
1-800-255-7778

R

Software
Architecture

The system software components and inter-task communication paths are illustrated in
Figure 4.

The most important aspect of the architecture shown in Figure 4 is the simplicity resulting from
independent task functionality with only minimal inter-task data flow requirements. Using a
PicoBlaze processor to implement the X10 controller, the system eliminates the need for
preemptive capability and greatly simplifies the software task (discussed further under X10
Controller Task).

Software components
The software components include:
• Real-Time Operating system
• HTTP Engine Task
• Camera Controller Task
• X10 Controller Task
• General Purpose IO Control Task
• Debug Task
• Configuration Task/Function
• Boot Program
• Intertask Data Flow
• Web Page
• CGI Command Programs

Figure 4: Tasks and Communications

WP200_03_100603

RTOS Internet

Debug

Task statistics
Execution times

Boot

Camera

6 pictures per min
Pan, tilt, zoom

X10

PicoBlaze
Intelligent IO
Byte Interface

HTTP

Web page

QUEUE

Two JPEG images
Graphics

Configuration

Multiple blocks
Ram disk buffer

GPIO

Byte interface

QUEUE

USB
Low Speed

User

http://www.xilinx.com

10 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

Real-Time Operating System
While implementation of the X10 with PicoBlaze makes OS requirements minimal, a real-time
operating system was included for several reasons. To succeed on an aggressive software
schedule, inclusion of the OS provided a quick project start using already debugged modules. A
large set of existing software modules were found to be available with established code bases.
These included TCP/IP stacks, web servers, virtual file systems, and HTML compilers. Small
memory size (2KB) with minimal functionality meant the OS would not require significant
memory. Most importantly, if some control requirement in the future requires preemptive
capability, it can readily be provided.
After considering several operating systems and package combinations, Chron-OS, a µC/OS-
based embedded operating system from InterNiche, was selected for the remote
camera/controller primarily because it comes with a complete set of proven integrated
packages for µC/OS, a TCP/IP stack, virtual file system, full featured web server and an
included HTML to C compiler. Since it is based on µC/OS-II, real-time OS-aware debugging
facilities are readily available for real-time testing. The software development time to port to
MicroBlaze was minimal compared to porting and integrating other modules or compared to
writing the software from the ground up.

Software System Trade-offs in Detail
Using a commercial operating system, custom operating system or no operating system at all
becomes a major decision for a product such as the camera/controller. This decision quickly
becomes architecturally complex. If the hard real-time requirement is left in the main
MicroBlaze processor, it will require a pre-emptive capability in the RTOS to insure service is
provided within the hard real-time 50 µsec window in all cases. It would be possible to ignore
this requirement and accept a small statistical error rate that would be unpredictable and
indefinable over various operating environments. It was decided not to accept an error rate
early in the project, even if it was considered low. If the real-time task can be off loaded from
the host with a hardware accelerator, the OS requirement becomes nonpre-emptive.
Furthermore, given a well done partitioning in the hardware acceleration, we may eliminate the
need for a commercial RTOS altogether. The RTOS becomes a simple-to-understand execution
loop. Another alternative would be to purchase a simple multitasking scheduler that would
sequence through the tasks using commercially well tested task switching capabilities, thus
freeing this project of the task of creating and debugging that code as well.
Eliminating the RTOS would save some code space in the beginning but may result in more
space utilization later in the project. The specifics of actual RTOS size and complexity
normally drive this decision. However, the short time to market, risk, and cost of producing
custom system software overrode other considerations. This was true even if the simple control
loop is chosen for the system software, as it, too, must survive real-time interrupts and task
switching in its simplest form. Once the decision to allow off-chip memory was made (as
detailed below), the per-unit cost of RTOS is extremely low. The advantages of having a real
RTOS up and running quickly were considered more important. Also, considering the
changeable nature of the product in the field, it was considered a great risk reduction to have the
rudiments of a fully preemptive RTOS in the product in case it is needed in the future. A full-
blown RTOS was included in the design.
Finally, a decision must be taken on whether to write custom software for system tasks or buy
as many modules as practical for integration into the product. At one extreme all needed
software could be written in assembly and force fit into the on-board BRAM. At the other
extreme, all but the camera controller over USB and the X10 controller might be purchased and
ported on to the MicroBlaze platform. Integration of the various pieces must be considered as
a major task unless a fully integrated package can be found. Since the porting task was

http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 11
1-800-255-7778

R

estimated to be three to four weeks, an easy decision was made to buy as much commercial
software as possible and do the porting. All totaled, the purchased software packages saved
about four man-years of effort compared to a “from-scratch” effort.

Memory Size
Spartan-3 devices have a sizable array of on-board block RAM that is sufficient for many real-
time control tasks with minimal software stores. A major trade-off arises between squeezing
down code space, even assembly language implementation, to use only on-board memory. In
this approach, user interfaces must be kept small and economical. The above approach must be
compared with using commercial software that is usually larger in size with more robust user
interfaces requiring more graphics. Using the code estimates shown in Table 1, it was clear that
it would be possible to use only on-board RAM. However, the software development task
would be about four or five man-years. Furthermore, recoding standard items like the TCP/IP
stack would introduce significant technical schedule risk. The cost of external DRAM in
volume is extremely low in dollars and board space. Early in the system design, it became
apparent that adding a single memory chip for $2 to $3, in volume, would eliminate the code
packing problem and make possible the use of purchased software packages. It became
apparent that the user interface would be skimpy and likely not acceptable to consumer users if
constrained to smaller on-chip memory space. It did not make sense to put a hard limit on the
user interface this early in the project. Therefore, the decision was made to include the
addtional off-chip memory.

Table 1: Code Space Estimates

Code Block STD "C" Packed

TCP/IP 12KB 6KB

RTOS 2-4KB 1KB

WebServer/HTTP 11KB 5KB

VFS 5KB 2KB

CGI 1KB 1KB

CGI Applications 15KB 2KB

Other Apps/DBG 1KB 1KB

Web Pages 50-100KB 6KB

Total 97-149KB 24KB

http://www.xilinx.com

12 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

HTTP Engine Task
The HTTP engine task is illustrated in Figure 5. The main HTTP engine function is to serve
web pages to users over the Internet and parse requests for command actions that are returned
via the CGI (common gateway interface). The engine must also be capable of “push”
operations to send unsolicited messages to users via e-mail.

The Ethernet interface can be a subset of a standard sockets API, so memory can be saved by
eliminating the sockets protocol. In that case, the CGI programmer must deal with a primitive
send message – receive message protocol. The HTTP engine must support a dial-up modem
interface to service customers who do not have broadband access. In this configuration, the web
server must be capable of being an ISP on the Internet. It must listen for a PPP call and send a
base page in response.
The CGI system functions to serve commands to various execution routines. When a CGI input
arrives, the HTTP engine must recognize it, send it to the command server which in turn will
call the appropriate execution routine to take pictures, turn on lights, or send status back to the
user in a new web page.
The virtual file system (VFS) is included on a RAM disk. It allows storage and retrieval of files
by standard C file calls. For web page storage, the file system allows standard HTTP anchors
and references to files that will be automatically processed by the HTTP engine. As can be seen
from Figure 3, the HTTP engine is the heart of the Camera/Controller. As command server, it
communicates all inter-task data either from or to the HTTP engine. As described under the
camera task, JPEG pictures from the camera can be stored on the RAM disk’s relatively high-
speed memory and subsequently can be accessed directly by file name from a web page for
transmission over the Internet. The server, HTTP protocol, and virtual file system take care of
all the details.

Camera Controller Task
The camera controller will send commands over two USB 1.1 connections and receive pictures
in return, using standard USB camera protocols. Received pictures will be stored on RAM disc
for later access by web pages. Also, the camera controller will send control signals to the
camera to control motion for roll, pitch, yaw, and zoom.

Figure 5: HTTP Engine Task

HTTP Engine
- Request parser

CGI System
- Command server

Standard C file calls
fopen(), fread(), etc.

Subset of standard sockets API

Virtual File System
(VFS)

TCP/IP Stack

WP200_04_100603

Dialup Modem Controller
- Initiates and answers calls

Ramdisk
files

http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 13
1-800-255-7778

R

In the future, the camera controller will use data path acceleration hardware to process 60
pictures per minute, save pictures in a ring buffer, perform lighting compensation and
annotations. The on-board multipliers will be used for direct cosine comparisons between
images to detect motion and reference patterns to detect alarms. Eventually, the camera digital
electronics may be incorporated into the controller, as well.

X10 Controller Task
The X10 controller task illustrates a common system-level problem. The X10 task must
respond by sending or receiving a higher frequency burst within 50 µsec of the 60-cycle power
zero crossing, a hard real-time requirement. The burst must complete within 200 µsec. During
that time, the controller must verify that it is a “correct” X10 burst, detect collisions, execute
back-off protocol and verify that the burst is the correct number of cycles. If implemented in the
main control processor, this means that other tasks running must be interrupted by a higher-
priority level. Suppose, as is very common, another communication task requires 60 µsec of
uninterrupted service to establish a high-speed link. The communication will happen only
infrequently in this system, but eventually the X10 service will fail sporadically when the two
tasks collide. Solving this problem with a classic preemptive operating system is
straightforward, but it will be complex and there will always remain a finite probability of
failure. Partitioning the problem with the addition of the PicoBlaze adds concurrency. The
PicoBlaze can service the 60-cycle line within 50 µsec to either output or read a data bit.
Communication between the PicoBlaze and MicroBlaze is reduced to 2 bytes to send or 2 bytes
read from the line. Using a MicroBlaze Controlled data clock solves the issue of process master
and allows the master processor (MicroBlaze) to be interrupted at any time without interference
with the X10 controller. The X10 process can be run as the lowest priority on MicroBlaze and
make no real-time constraints on the operating system. The interface between MicroBlaze and
PicoBlaze is a 4-wire serial data interface consisting of data in, data out, data clock and
reset/start. Figure 6 illustrates the interface.

As shown in Figure 3, the X10 task is implemented using a PicoBlaze, which only needs to pass
a few bytes of data to the web page in the Engine/HTTP task. Data is passed in a standard
message queue to and from the X10 task. The RTOS can now schedule the tasks as a simple
round robin, time slice, or as full pre-emptive scheduler, if desired.

General-Purpose IO Control Task
As more devices become available in the future, both hardware and software upgrades will be
produced. There are eight general-purpose outputs and 16 general-purpose inputs that may be
used as utilities until a specific device is added into the system. Initially, the unused output lines
will be treated as independent bits that may be set high or low, on command. The 16 unused

Figure 6: MicroBlaze – PicoBlaze Bit Serial Interface

MicroBlaze GPIOs

IN_Port

PicoBlaze

OUT_Port

DATA IN

D_Clock

Input Enable

Data Out

ERROR/Ready

http://www.xilinx.com

14 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

input lines will be polled about 10 times per second and displayed individually. Status will be
displayed on the web page. As specific fire alarms and motion detectors are added to the
system, users will be able to specify the device configuration via their web pages, where
appropriate displays will be downloaded, as well.

Debug Task
As shown on Figure 4, the debug task is a task-level debugger. It provides TCP/IP stack data,
task control block information, and task statistics like execution times and memory use. It is
intended for only limited software development. When running, the debug task uses an RS232
port for communication with the user. The other RS232 port is reserved for modem use.

Configuration Task/Function
The configuration task is a special task capable of changing the entire hardware and software
system. As such, it requires special care to verify that the downloaded configuration and new
program code are correct. Extra consideration is required to provide a user error recovery
mechanism by which a user in the field can sustain a communication or apply user error which
kills the product. A special recover or special reset switch will be included to cause the
Camera/Controller to boot up using its previous configuration and program.
Upgrades for both software and hardware will be received over the Internet and will update the
appropriate FLASH PROM. The basic mechanism will be to download and store configuration
and Programs in blocks of 64 KB, using the RAM disk for temporary storage. FLASH
programming is a relatively slow process requiring more time than data download. Fortunately,
the data download speed and buffering are automatically regulated by the RAM disk buffer
manager and the TCP/IP protocol. This is another major advantage of using integrated system
software.
After downloading is complete, the reconfiguration task initiates a reboot with the new
hardware configuration and software. If an error had occurred in either load, the system would
fail in a nonrecoverable mode. The program FLASH memory is exactly twice the size of the
maximum possible program store. The result is that a catastrophic failure on download can be
recovered by the user simply by rebooting via the special reset switch on the product.

Boot Program
BRAM (Block RAM) attached to the IOPB and DOPB busses contains the initial boot
program. It will be placed there during the power up sequence when the FPGA is configured
from FLASH. The Boot program will initialize the processor, run a set of diagnostics on the
processor system, and copy the appropriate contents of program FLASH into SDRAM. Then it
will jump to the start location of initialization routines for the OS in SDRAM and begin
executing the RTOS. Since FLASH memory is large enough to hold both the current program
configuration and also the previous one, the user can recover the previous configuration by
setting the recover switch.

Intertask Data Flow
As illustrated in Figure 4, all major data paths flow between the HTTP task and some other
task. The main web page and form are estimated to be 54KB to 154KB in size and reside
entirely within the HTTP task on RAM disk. Access will be via the virtual file system. The
main page (Index) and form are expected to be about 8KB. Two JPEG images must be passed
from the camera to the HTTP task with size estimates of 10KB to 100KB. Graphics for page
illustration and prompting are estimated to be from 10KB to 50KB. The data pass is shown as
shared memory, possibly with a semaphore for co-ordination, although the virtual file manager
may provide all the buffering needed. Finally, camera commands and status must be passed

http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 15
1-800-255-7778

R

between the HTTP and camera. These are 2- to 4-byte commands that will follow standard
USB camera requirements. Also, as described earlier, four hardwired control lines extend to the
camera mount to control positioning. These are not shown in the software figures.
X10 commands and status require only a small number of bytes and will be supported with a
message queue from the RTOS. GPIO is from 3 to 4 bytes of data and will be handled in a
standard message queue, as well.

Web Page
Web pages may be served containing HTML text files with all supported tags from HTML 2.0
and above. Pages may include forms tables, frames, graphics, Java applets, and all other
features of the Web. Server side include (SSI) commands may be embedded in the HTML of
the page. A maximum of two web page connections will be supported at any time. The original
product may restrict usage to one connection if implementation becomes too complicated.

CGI Command Programs
Pages may invoke CGI scripts from forms, which essentially divert replies from GET and
POST commands to CGI code. References may be to any file name where the files are expected
to be on the virtual file system. Parameters are passed from the form appended to the filename
as a string of encoded text. In normal operation, the parameter string is not expected to be more
than 10-15 bytes long. Picture data will simply be served as a JPEG image with the response
page to a user. In operation, all camera control, X10 and GPIO operations, will be executed
from CGI programs stored as executable files.

Hardware
Architecture

Figure 3 shows the block diagram of MicroBlaze processor system which resides in the FPGA.
It is a conventional computer configuration based on the Xilinx OPB bus. Note that most of the
blocks are standard IP devices available from Xilinx and others. Because of this, it will be
possible to get a basic system running very quickly. Our plans call for providing a basic
execution vehicle to the firmware team as soon as the board is available. It will include the
MicroBlaze, boot ROM, SDRAM Controller, Flash Read/Write Controller, Timer, and UART.
Other components will be added in later iterations. All data path accelerators, other than the
PicoBlaze controller in the X10 controller, will come on board through later product design
after the Camcon is shipped.

OPB Bus System
The OPB Bus forms the heart of the Camcon design. It is a standard Xilinx component that
connects all peripherals to the MicroBlaze processor. The bus also serves as the
Instruction/Data bus for main memory which is implemented in an external SDRAM chip. The
processor D-OPB and I-OPB ports are connected directly to the OPB bus. Since our design
currently does not use DMA, the only masters on the bus are the MicroBlaze interfaces.
MicroBlaze, being a Harvard processor architecture, has separate Instruction and Data bus
interfaces which enables it to simultaneously access data items and instructions. In a high-
performance processor application, engineers often attach data and instruction secondary
caches to the two ports, respectively. The caches usually have a common bus interface to main
memory. Since the Camcon computing requirements can be met without employing secondary
caches, the I-OPB and D-OPB ports can be conveniently connected to the OPB bus. Primary
instruction and data caches will be implemented in BRAM memory. The size of these caches
will be set to use most of the remaining BRAM memory after the rest of the system has been
implemented.

http://www.xilinx.com

16 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

Some embedded designs separate data and instruction memory into separate memory
components. While this again helps performance and prevents the processor from overwriting
its program store in the event of a crash, it creates serious memory management problems for
the software engineers. It forces software architects to estimate independent program and data
memory requirements not only for current releases of the firmware, but also for future releases.
It is much easier to estimate total memory requirements for the life of the product without
concern for how that memory will be used. In addition, only a single external main memory
chip is required, rather than two, and fewer IO pins are required with a single-memory
architecture. By connecting the Instruction and Data ports directly to the OPB bus, we also
avoid additional debug hardware which enables debugger software to gain write access to the
instruction memory. Note that I-OPB is a read-only port. See the appropriate Xilinx application
notes on this subject to gain more understanding.

Boot ROM
Dual-port block ram connected to MicroBlaze via the ILMB and DLMB buses serves as the
boot ROM for the system. It is initialized at FPGA configuration time and contains a program
that copies the contents from the program FLASH to the SDRAM and initializes the data area
of the SDRAM at power up. Because block RAM comes as a dual-port memory, it is
convenient to connect to it using both boot ports, as suggested by Xilinx.

External Memories
The Camcon board contains three memory chips: hardware flash, program flash, and SDRAM.
The hardware and program flash memories must be written by the application to facilitate
internet-based hardware and software upgrades. Thus, the Flash memory interfaces are
bidirectional.
The hardware flash memory is implemented using a special FLASH PROM with both a serial
Xilinx configuration port and a JTAG read/write access port. This type of device is available
from Xilinx, Maxim, and others. At power-up, the FPGA controls the serial configuration port
to load the current hardware configuration into the FPGA. During runtime, the application
software can change the contents of the hardware flash memory by accessing the JTAG UART
port.
The EEPROM will initially be programmed in the factory off board the Camcon controller as
there is no external write access to the chip when in system, except through the JTAG system.
The chip will be socketed on the board.
A tough quality control standard will be required to manage hardware upgrades. If a serious
defect were to be included in an upgrade, it could cause the product to fail in a nonrecoverable
manner. Only the factory repair operation of physically removing the FLASH PROM and
programming it again, externally, could recover the system. Also, the application software will
initiate a write to the EEPROM only after the entire configuration has been downloaded into
ramdisk and checked for errors. This prevents a communications failure from turning into a
nonrecoverable fault.
The SDRAM interface is a standard logic block available from Xilinx and others. Because the
I-OPB and D-OPB are connected together on the OPB bus, there are no special requirements
for the interface. The interface is 16 bits wide and connects to a single 2MB DRAM chip. As
the computer system is 32 bits, two memory accesses are required to read or write a 32-bit
word. This certainly slows the system, but cost constraints demand only one DRAM chip.

USB Ports
As already discussed, two on-chip USB 1.1 ports are included in the design to interface to the
Web cameras. The decision to include the blocks onboard as compared to using inexpensive

http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 17
1-800-255-7778

R

USB chips off board was not an easy one. The off-chip components are inexpensive and
already debugged. But they can’t be upgraded via download. Also, they can be implemented in
FPGA fairly inexpensively; requiring less than 2200 logic cells each. Note that at the time of
this paper, we were not able to locate a USB block with an OPB connection. So a little logic
will have to be added to interface the commercially available USB IP block to the OPB bus. As
there is no DMA in this application, the interface should be simple and require few additional
resources.
Our analysis showed that even if the USB ports were implemented off chip, a
Spartan-3 S1000 would be required for the application. So, aside from the one-time cost of
buying the USB IP, there is no additional cost to the product of adding USB ports. Note that by
including USB on chip, we can upgrade the hardware in the future and support the higher speed
2.0 standard, if required. Note also that a hardware bug can be fixed if the core is on-chip.

Ethernet Port
We intend to use the Ethernet IP provided by Xilinx for this application. The block is complete
with an OPB interface. Our application requires only the 10baseT functionality. Again, there
was discussion of buying an external controller. Even with the controller on-chip, an external
transceiver chip is required. And since chips are now available which combine the controller
with the transceiver, it is possible to implement the controller external to the FPGA without
increasing chip count. But it does increase cost and it does eliminate future field upgrades of the
Ethernet hardware.
Once again, we decided to include the controller on-chip. Being directly connected to the OPB
bus made the software interface simpler and we have the flexibility to make changes to the
controller itself in the future, if required. With an area cost of only 3300 logic cells, the
controller didn’t change the size of the FPGA required, which made the decision easy.

A Note about Debug
With a processor on board, system integration and power-up can proceed on a piece-by-piece
basis very easily. The process is very similar to standard board power-up for any processor-
based system. This is important as the very first system loaded on the FPGA. Power-up can
then proceed by checking out the JTAG debug port, the processor diagnostics, memory
interfaces, memory, execution from memory via JTAG, and execution from memory in real
time. Then using ChipScope or equivalent, system busses and new IP can be systematically
checked out and debugged along with system software and finally applications software. A
detailed discussion of the debug process will be the subject of a future white paper.
The onboard debug resources required to probe the hardware themselves take capacity from the
FPGA, especially BRAM resources. There are two ways to approach providing the resources
for debug in an FPGA that is almost fully utilized by the application itself: 1) use a larger FPGA
to emulate the Spartan-3 XC3S1000 part or 2) build several designs, each implementing a
subset of the application and thus each freeing the resources for the on-chip debugger. We hope
to use a larger FPGA if it is available at debug time. But because the platform is configurable,
it is possible to resort to debugging with a subset of the design.

Expansion
Strategy

Upgrades and Enhancements
Throughout the system design process, expansion to add new features and even new products
has been a major consideration. In the foreseeable future, expansion to digitally process images
from the camera to enhance quality, increase frame rate, and extract image-based information
are all expected. A frame rate of at least 60 frames per second is anticipated. Functionality for
motion detection, alarm recognition by comparing reference images, annotations with time

http://www.xilinx.com

18 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

stamps and MPEG video are all functionalities that may be added in the field that employ DSP
hardware acceleration. Eventually, communications over 802.11b wireless and tight firewall
security will be needed. More sophisticated security systems such as MD5 or Digest may be
added or even key-based secure protocols such as IP/sec.
Finally, since the system is completely reconfigurable and will be supplied with a flexible
connector scheme, entirely new products could be created in the field as new devices emerge in
the home controls arena.

Field Product Fixes
In the design scenario chosen, software is allowed to drive the design, as shown in Figure 7.

http://www.xilinx.com

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras

WP200 (v1.1) November 14, 2003 www.xilinx.com 19
1-800-255-7778

R

Hardware upgrades late in the design cycle, or even in the field, will be driven by software
requirements. As new controlled elements are added to the product repertoire, additional
features can be optimally accelerated by logic implemented in CLBs, BRAMs, multipliers, and
SRL16s. Field fixes and changes can add new data path accelerators at any time. For example,
after a product ships, one of the more perplexing problems to solve is an intermittent failure at
random times. Often, the problem is the result of a statistical failure from tasking software
where the scheduling fails. Or, it may result from a hardware race condition or metastable
problem that is discovered only when enough units are shipped to see the statistics of failure.
Solving these problems with only software modifiability can be extremely difficult or
impossible. Now with the ability to modify hardware and add data path accelerators at will,
these problems become relatively simple to fix once they are found. The camera with X10
controller example uses a PicoBlaze processor to eliminate the tight real-time timing problem
from the operating system. The same design techniques can be applied to products even after
they are shipped. For the simplified design, the MicroBlaze processor is all that is needed to
support the TCP/IP stack and Web page protocol.

Figure 7: Software-Driven Development

Product Specifications

Prototype:
C program running on PC

Embedded Software
Products

Refinement

Board Specifications

WP200_02_100603

Hardware Prototype

Hardware Complete

FPGA HDL
Implementations

(Design running hardware
in hours)

FPGA Hardware
Specifications

Spartan-3 based
Embedded

Platform

http://www.xilinx.com

20 www.xilinx.com WP200 (v1.1) November 14, 2003
1-800-255-7778

White Paper: Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
R

Conclusion The following major points summarize system design for the Camera/Controller:
• Project low cost of $41 for controller + $20 for camera
• Field configurable

- Support new products in both hardware and software, as required
- Fix field problems in hardware and software

• Software-driven design flow
- Optimized hardware driven by software speeds time to market
- Reduces technical risk during short schedule

• Future DSP functionality will use data path acceleration
• PicoBlaze used to meet real-time hardware requirement simplifies software

Revision History The following table shows the revision history for this document.

Date Version Revision

08/14/03 1.0 Initial Xilinx release.

11/14/03 1.1 Reformatted in standard template.

http://www.xilinx.com

	Using Spartan-3 FPGAs As Low-Cost Controllers for Remote Digital Cameras
	Benefits
	System Requirements
	Communications
	User Interface
	Controls
	Upgradability
	Future Performance and Features
	X10 Controller
	Implementation Overview

	Design Process
	Software Architecture
	Software components
	Real-Time Operating System
	Software System Trade-offs in Detail
	Memory Size
	HTTP Engine Task
	Camera Controller Task
	X10 Controller Task
	General-Purpose IO Control Task
	Debug Task
	Configuration Task/Function
	Boot Program
	Intertask Data Flow
	Web Page
	CGI Command Programs

	Hardware Architecture
	OPB Bus System
	Boot ROM
	External Memories
	USB Ports
	Ethernet Port
	A Note about Debug

	Expansion Strategy
	Field Product Fixes

	Conclusion
	Revision History

